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Abstract. We address the problem of identifying multiple independent speech
sources from a single signal that is a mixture of the sources. Because the problem
is ill-posed, standard independent component analysis (ICA) approaches which try
to invert the mixing matrix fail. We show how the unsupervised problem can be
transformed into a supervised regression task which is then solved by support-
vector regression (SVR). It turns out that the linear SVR approach is equivalent to
the sparse-decomposition method proposed by [1, 2]. However, we can extend the
method to nonlinear ICA by applying the “kernel trick.” Beyond the kernel trick,
the SVM perspective provides a new interpretation of the sparse-decomposition
method’s hyperparameter which is related to the input noise. The limitation of the
SVM perspective is that, for the nonlinear case, it can recover only whether or not a
mixture component is present; it cannot recover the strength of the component. In
experiments, we show that our model can handle difficult problems and is especially
well suited for speech signal separation.

15.1 Introduction

Independent component analysis (ICA) [3–5] attempts to recover multiple
source signals from one or more observed signals that are mixtures of the
sources. ICA algorithms rely on the assumption that the sources are statisti-
cally independent, and most make the further assumption that mixtures are
linear combinations of the sources. Well known ICA methods like “infomax”
[6, 7], maximum likelihood approaches [8], entropy and cumulant based meth-
ods [9–11] have the restriction that the number of source and mixture signals
must be equal. The restriction stems from the fact that these methods recover
the sources by inverting the mixing matrix. To avoid ill-posed problems, the
inversion requires at least as many observations as sources.

In many real world applications, only one observation is available. Speech
processing is an important example in which this situation is often true. How-
ever, many nonspeech acoustic signals, such as bird songs, music, and
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traffic, are recorded with only one or two microphones. Other technological
applications are based on a single mixture time series, such as mobile
communication signals with direct sequence code division multiple access
(DS-CDMA) [12]. Standard ICA approaches cannot be used in these cases.

The human auditory system is unmatched in its ability to robustly dis-
tinguish among multiple sound sources from two mixtures—the ears. It can
even extract sources from monaural recordings. In some cases, separation of
speech signals is easy because the signals occur in different frequency bands.
However, when simple physical characteristics do not distinguish the sources,
the task is extremely difficult.

As one realizes when listening to an orchestra, the human auditory system
is able to separate complex mixtures from just two sources. The conductor
is able to isolate individual melody lines, instruments, or even musicians
from the ensemble, whereas a naive audience member may not. The dif-
ference between the conductor and the audience member is the conductor’s
knowledge and familiarity with the sound patterns that constitute the perfor-
mance. One could even imagine that the conductor has a dictionary of sound
atoms—canonical or prototypical musical phrases and timbres—and identi-
fication of components comes by isolating the atoms from the mixture. This
argument carries over to speech processing. Our conjecture is that people can
separate speech so well because of the accumulation of speech experience since
birth. These experiences allow for the construction of a dictionary of sounds
corresponding to vowels, words, etc. The dictionary contains not only one en-
try per vowel or word but multiple entries which allow to distinguish female
from male and help to identify words spoken in a dialect or foreign accent.

Several ICA approaches have adopted the idea of using a dictionary to
extract multiple sources from a smaller number of mixtures, or even one
mixture [1, 2, 13, 14]. The dictionary can be composed of primitive functions
(e.g., Fourier bases, wavelet packages, or Gabor functions) [1, 2], it can be
predefined based on prior knowledge, or it can be trained to fit the problem
[14–17]. Zibulevsky and Pearlmutter [1, 2] specify not only a dictionary, but
also a prior that enforces sparseness—i.e., an expectation as to how many
sources will be present simultaneously. All these approaches are restricted to
mixtures consisting of linearly superimposed dictionary atoms; this restriction
is necessary to avoid ambiguity in the problem.

In this chapter we show that the sparse-decomposition method of Zibulevsky
and Pearlmutter can be reinterpreted as ε-support vector regression (ε-SVR)
[18–23] when there is a single mixture and a Laplacian prior.

By drawing the connection between ICA—an unsupervised learning
task—and support-vector regression—traditionally used for supervised
learning—we show how an unsupervised task can be transformed into a
supervised framework. This transformation may be useful to other prob-
lems as well. The key idea of the transformation is to use a predefined
set of examples—the dictionary atoms—for generating target values for the
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supervised learning framework. In our approach, each unsupervised exam-
ple is paired with each atom, and a fixed function is used to generate a
“target” value for the example, i.e., the target for the SVR. Typically, the
target value might be a measure of similarity between the dictionary atom
and the example, such as a dot product. Using this approach for speech
signal processing, which may contain a mixture of multiple speakers, we
break the input signal into short segments which serve as the unsupervised
examples. Using a prespecified dictionary of atomic speech signals [16], we
use our method to determine, for each segment, which combination of the
atoms is present. Our approach may also be useful for DS-CDMA mobile
communication, where the dictionary consists of spreading sequences of the
users.

The ε-SVR framework allows us to obtain sparse solutions. The sparsity
constraint reflects the fact that at any point in the input signal, only a few
mixture components (i.e., a few speakers) should be present. Within the
SVR framework, support vectors will correspond to exactly those dictionary
atoms that are correlated with the input signal, but which are mutually
decorrelated. The support-vector machine determines which target values are
spurious, which are produced by superimposition, and which indicate that a
dictionary entry is present in the input signal.

The idea of applying SVR to unsupervised problems was also suggested
for filtering [24], and recently for estimating missing values in cDNA microar-
rays [25].

By drawing an analogy between ε-SVR and the sparse-decomposition
method for ICA, we obtain a new interpretation to the sparse-decomposition
method’s hyperparameter that determines the degree of sparseness. Further,
the analogy yields a generalization of the sparse-decomposition method to
allow for nonlinear transformations of the sources before they are mixed, and
to allow for a further nonlinear transformation in the process of identifying
dictionary atoms in the mixture.

We demonstrate our approach with experiments using noisy mixtures of
speech with a single microphone. As we show, our approach incorporates
nonlinear transformations of the dictionary atoms that achieve a degree of
robustness and invariance to irrelevant characteristics of the speech signal.
Examples of transformations and the corresponding invariants that we con-
sider include: taking the local variance of the absolute value or square of
the waveform to reduce sensitivity to the sign of the waveform combined
with adding a constant value to the waveform (a nonlinear transformation,
and a nonlinear invariant); or the power spectrum which is invariant to
temporal shifts of the waveform (linear transformation and nonlinear in-
variant). These transformations are highly relevant for speech separation
where, for example, shift invariance avoids the need to segment the speech
signal.
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15.2 Viewing Sparse Decomposition as ε-SVR

In this section, we review the sparse-decomposition method introduced by
Zibulevsky and Pearlmutter [1], focusing on the case of a single mixture
signal. We will also describe the relation between sparse decomposition and
ε-support vector regression (ε-SVR).

15.2.1 The Sparse-Decomposition Method

Denote the mixture signal by x ∈ R
L. In the case of speech, the signal

might correspond to a window of L consecutive samples from a longer input
stream. We assume a dictionary matrix, S ∈ R

L×P , whose columns consist
of the P atomic signals of length L. We assume a generative process in which
the mixture is created by first choosing a set of dictionary atoms and then
combining them linearly with noise:

x = S c + ν =
P∑

i=1

ci si + ν, (15.1)

where c ∈ R
P is a vector of weighting coefficients, one per atom, ν ∼ N

(
0, σ2

)

is an L-dimensional i.i.d. additive Gaussian noise vector, and si the ith atom
in the dictionary: si = [S]i. Figure 15.1 illustrates the generative process
that produces the mixture.
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Fig. 15.1. The data generation process. Four atoms from the dictionary S are
weighted by real nonzero coefficients and are added together with noise resulting
in the mixture. The goal is to recover the nonzero weighting factors, or at least to
detect whether an atom is present in the mixture.
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The goal of the sparse-decomposition method is to determine the
coefficient vector, ĉ, that satisfies two properties: (I) x must be well ap-
proximated by ĉ, and (II) ĉ is sparse, i.e., it has elements of small magni-
tude. These two properties are achieved by a Bayesian approach in which
property 1 is characterized by the likelihood, p (x | c,S), and property 2 is
characterized by the prior, p (c). Thus, the approach tries to maximize the
posterior

p (c | x,S) ∝ p (x | c,S) p (c) ,

where we use “∝” because we omit the constant normalization factor in the
denominator of Bayes rule. Given the Gaussian noise model, the likelihood is

p (x | c,S) ∝ exp
(

− 1
2 σ2

(x − S c)2
)

.

To enforce sparseness of the coefficients, a Laplacian prior for c is used with
‖c‖1 =

∑P
i=1 |ci| we have:

p (c) ∝ exp
(
− ε

σ2
‖c‖1

)
.

Consequently, the posterior is

p (c | x,S) ∝ exp
(

− 1
σ2

[
1
2

(x − S c)2 + ε ‖c‖1
])

.

The solution, ĉ, is obtained by maximum a posteriori (MAP) search. Tak-
ing the log of the posterior, flipping its sign, and ignoring irrelevant constant
terms and factors, we obtain the minimization problem

ĉ = arg min
c

1
2

(x − S c)2 + ε
P∑

i=1

|ci|.

This unconstrained optimization problem can be turned into a constrained
optimization problem in which c is split into two vectors such that c =
c+−c−, where c+ and c− contain the magnitudes of the positive and negative
coefficients of c, respectively. The MAP solution {ĉ+, ĉ−} is

arg min
c+,c−

1
2
(
c+ − c−

)T
ST S

(
c+ − c−

)
−

xT S
(
c+ − c−

)
+ ε 1T

(
c+ + c−

)

s.t. 0 ≤ c+
i , c−i ≤ C, (15.2)

where T is the transposition operator, 1 is the vector of ones, and C is an
upper bound that can serve as an additional constraint on the solution (which
was not part of the original formulation by Zibulevsky and Pearlmutter).

We will show that this formulation is ε-support vector regression (ε-SVR)
[18], but in order to do so, we must first give a brief overview of ε-SVR.
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15.2.2 ε-Support Vector Regression

ε-SVR is a supervised approach to regression in which we are given training
data

{(
si, yi

)
, . . . ,

(
sP , yP

)}
, where si ∈ R

L and yi is a scalar. The goal is to
produce a function, h, such that h

(
si
)

closely approximates yi. In the linear
formulation of ε-SVR, h

(
si
)

=
〈
w, si

〉
, where w ∈ R

L, and 〈., .〉 denotes the
dot product. In the nonlinear formulation, h

(
si
)

=
〈
w,θ

(
si
)〉

, where θ is a
mapping from R

L to R
L.

Note we consider regression functions through the origin. Consequently,
the formulation excludes a constant offset term. The ε-SVR attempts to
obtain a “flat” function by minimizing 1

2‖w‖2, but subject to the constraint
that the fit is good enough, as quantified by the constraint
∣
∣yi − h

(
si
)∣
∣ < ε + ξi (15.3)

for all i. The parameter ε is a measure of how accurate the fit needs to be,
or intuitively, a measure of the noise in the data. The slack variables ξi ≥ 0
allow for the fact that it may not be possible to find an h that satisfies the
ε accuracy criterion.

ξi = max{0,
∣
∣yi − h

(
si
)∣
∣ − ε}.

However, to ensure that the deviations are minimal, the optimization
attempts to minimize the magnitude of the slack variables as well. Specifi-
cally, the constrained optimization is over the objective function

1
2
‖w‖2 + C ‖ξ‖1,

where C determines the trade off between the flatness of the function and
the tolerance of prediction errors and

‖ξ‖1 =
∑

i

ξi =
∑

i

max{0 ,
∣
∣yi − h

(
si
)∣
∣− ε} =

∣
∣yi − h

(
si
)∣
∣
ε
. (15.4)

We divide (15.3) into an inequality set for which
∣
∣yi − h

(
si
)∣
∣ = yi − h

(
si
)
,

where ξi in (15.3) is denoted by ξ+
i , and into an inequality set for which∣

∣yi − h
(
si
)∣
∣ = h

(
si
)
− yi, where ξi in (15.3) is denoted by ξ−i . We obtain

for the linear case h
(
si
)

= wT si as ε-SVR optimization problem

min
w,ξ+,ξ−

1
2
‖w‖2 + C

l∑

i=1

(
ξ+
i + ξ−i

)
(15.5)

s.t. yi − wT si ≤ ε + ξ+
i ,

wT si − yi ≤ ε + ξ−i ,

ξ+
i ≥ 0 and ξ−i ≥ 0,
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It is known that the primal ε-SVR optimization problem (15.5) possesses
an alternative but entirely equivalent formulation, the dual formulation:

min
c+,c−

1
2
(
c+ − c−

)T
ST S

(
c+ − c−

)
−

yT
(
c+ − c−

)
+ ε 1T

(
c+ + c−

)

s.t. 0 ≤ c+
i , c−i ≤ C, (15.6)

where S is the matrix formed by si: si = [S]i. The coefficient ci are the
Lagrange multipliers for the primal constraints in (15.5) which are split into
positive and negative components, c+

i and c−i : ci = c+
i − c−i . The si for which

ci �= 0 are called support vectors or support sources or support signals. Note
that

(
c+ − c−

)T
ST S

(
c+ − c−

)
=

1
2

P∑

i,j=1

ci cj

〈
si, sj

〉
.

For the nonlinear formulation we define the Gram matrix K as

Kij = k(si, sj) =
〈
θ
(
si
)
,θ
(
sj
)〉

.

The Gram matrix can be written as K = θ(S)T θ(S), where θ(S) is the
matrix formed by θ(S)i = θ(si). The nonlinear dual formulation is therefore

min
c+,c−

1
2
(
c+ − c−

)T
K
(
c+ − c−

)
−

yT
(
c+ − c−

)
+ ε 1T

(
c+ + c−

)

s.t. 0 ≤ c+
i , c−i ≤ C. (15.7)

It can be seen that in (15.6) only ST S is replaced by K to obtain a nonlinear
formulation.

As a consequence of the transformation from the primal to the dual for-
mulation, the primal vector w can be expressed through the coefficients ci

and the training data si:

w =
P∑

i=1

ci si

for the linear version and

w =
P∑

i=1

ci θ
(
si
)

for the nonlinear version. Consequently, for the linear formulation

h(s) =
P∑

i=1

ci

〈
si, s

〉
= sT S c.



418 Sepp Hochreiter and Michael C. Mozer

For the nonlinear formulation we obtain

h(s) =
P∑

i=1

ci

〈
θ
(
si
)
,θ (s)

〉
= θ(s)T θ(S) c (15.8)

which can reformulated with a kernel as

h(s) =
P∑

i=1

ci k
(
si, s

)
= k(s,S)T c,

where k(s,S) is the vector

k(s,S) = θ(s)T θ(S) =
(
k(s, s1), k(s, s2), . . . , k(s, sP )

)
.

15.2.3 The Relationship Between the Sparse-Decomposition
Method and ε-SVR

The sparse-decomposition method and ε-support vector regression are equiva-
lent: Optimization problem (15.2) is identical to optimization problem (15.6).
To spell out the mapping, consider framing the sparse-decomposition method
as ε-SVR. The data for the ε-SVR consists of P training examples, where the
input for example i is the dictionary atom si, si ∈ R

L, and the target for
the example, yi, is the dot product of the mixture x and dictionary atom si:
yi = xT si =

〈
x, si

〉
.

The ε-SVR formulation gives an interpretation to the hyperparameter ε
in the sparse-decomposition method. It is a measure of the noise level in the
data, and it indirectly affects the number of ĉi that are significantly non-
zero. As depicted in Fig. 15.2, each example will have a target, yi, that either
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Fig. 15.2. The linear ε–support vector regression corresponding to the sparse-
decomposition method. Each “x” in the figure denotes a single training example in
the ε-SVR model. The horizontal axis is a one-dimensional depiction of the input
space, and the vertical axis is the target output. The grey area, the ε-tube, speci-
fies the range of target outputs that are not significantly different from zero. The
examples i that lie outside the ε-tube will have |ĉi| = C.
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lies inside or outside the ε-tube. The closer a target yi is to zero, the more
nearly orthogonal is the mixture x to atom si, and the less likely atom i
is to be present in the mixture. Thus, the ε-tube distinguishes atoms that
are likely to be relevant from those likely to be irrelevant. It turns out that
any example i lying outside the ε-tube will have either ĉi = C or ĉi = −C.
In the sparse-decomposition formulation, ci indicates the degree to which a
dictionary atom i is present.

15.3 Nonlinear Formulation

The ε-SVR framework also provides for a nonlinear approximation of y by
introducing a nonlinear kernel k(a, b), where a, b ∈ R

L. The dot products〈
si, sj

〉
in the ε-SVR are replaced by

k
(
si, sj

)
=
〈
θ
(
si
)
,θ
(
sj
)〉

,

or in matrix notation ST S is replaced by the kernel matrix K with Kij =
k
(
si, sj

)
. The interpretation of this kernel is that the P vectors si are mapped

by a function θ into a feature space. The kernel is the dot product in the
feature space: k(a, b) = 〈θ(a),θ(b)〉.

Exploiting the correspondence we have established between the
sparse-decomposition method and the ε-SVR, we can generalize the linear
sparse-decomposition method to a nonlinear method by analogy to the
nonlinear ε-SVR. We present two different nonlinear extensions of the
sparse-decomposition method. In both extensions, the dictionary atoms
si are mapped into a feature space using a nonlinear kernel. In the first
extension we assume that the mixture x arises from a nonlinear combination
of atoms sj . In the second extension we assume that mixture is linear but
prior to being mixed, the atoms undergo a nonlinear transformation. We
consider two subclasses of the second extension: (a) we directly approximate
the nonlinear transformation by applying this transformation to the atom
waveform sources as well, and (b) we extract invariances of the nonlinear
transformation through the feature map which maps into a space of compo-
nents which are invariant under the nonlinear transformation. In this space
of invariances, the dot products extract similarities between the mixture and
the dictionary atoms.

15.3.1 Nonlinear Mixtures

In our first extension, we assume that the mixture x results from a nonlinear
combination of the atoms s1, s2, . . . , sP :

x = g
(
s1, s2, . . . , sP

)
.
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Fig. 15.3. The nonlinear ε-SVR. The dictionary atoms si are mapped by θ into a
feature space.

We further assume that the nonlinear mixture g can be expressed as a linear
mixture in some feature space:

k
(
si,x

)
= k

(
si, g

(
s1, s2, . . . , sP

))
=

P∑

j=1

k
(
si, sj

)
cj .

The feature space that allows for the linear mixing is defined by the mapping
θ(.), yielding the kernel k already mentioned above:

k
(
si, sj

)
=
〈
θ
(
si
)
,θ
(
sj
)〉

.

The target values for the ε-SVR are yi = k
(
si,x

)
.

Finally we apply nonlinear support-vector regression to obtain ĉ. The
presence of dictionary atom i in the mixture is indicated by ĉi = C or ĉi = −C
(see Fig. 15.3). Optimization of the kernel parameters for an SVR-kernel may
be used to obtain θ. However, θ cannot be estimated explicitly, because it is
represented only implicitly via its correspondence with a kernel function.

15.3.2 Nonlinear Transformation of Atomic Sources

Another generalization of the sparse-decomposition method is obtained by
allowing each atomic source si to be explicitly transformed by θ—a mapping
from R

L into R
L—before the sources are linearly superimposed to produce

the mixture. In contrast to the previous section, where θ was implicitly spec-
ified via a kernel function, here we must specify θ explicitly. Given a choice
of θ, the atomic sources are first transformed by θ, and the linear theory is
applied to the transformed sources.

With the transformation θ, (15.1) becomes

x =
P∑

j=1

ci θ
(
si
)

= θ (S) c.
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Multiplying the equation from left with θ (s)T gives

θ (s)T
x = θ (s)T

θ (S) c.

This equation is exactly the definition of the nonlinear ε-SVR regression
function, h(S)—see (15.8)—with θ as the feature space mapping and the
target

yi = h(si) = θ
(
si
)T

x.

15.3.3 Nonlinear Transformed Atomic Sources: Inhomogeneous
Case

In the previous section, we assumed that each atomic source si is transformed
by the same function θ. Extending this homogeneous case, we now consider
a more general inhomogeneous case in which each atomic source, si, can be
transformed by a distinct function, fi (it will become clear shortly why we use
the notation fi rather than θi), where the {fi} represent a family of functions
parameterized by a single variable τi, i.e., fi(s) = g(s; τi). For example, if x
represents a time series, g might shift the input in time by τi elements, and
fi would then correspond to a particular shift.

In the situation we consider, we wish to extract the invariant feature, e.g.,
a representation of the time series independent of its particular shift. Suppose
that we can determine a function of the input space, θ(.), that is invariant
under and linear in fi, i.e.,

θ (a fi (s)) ∝ θ (s) .

For example, if θ computes the power spectrum, it would be invariant under
shifts in the signal and q(a) = a. This function θ then serves to extract the
invariant feature from the signal.
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Fig. 15.4. The data generation process allowing for transformations of the atomic
sources prior to mixing, in contrast with the original sparse-decomposition method
(see Fig. 15.1).
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Our goal is to approximate the feature of the mixture, θ (x), in terms of
a linear combination of the features of the atoms, i.e.,

θ (x) =
P∑

i=1

t(ci) θ
(
fi

(
si
))

=
P∑

i=1

ci θ
(
si
)
.

Under this formulation, the unknown transformations fi are eliminated from
the approximation problem. ĉi indicates whether mixture x and atom si

share the same features or not: large ĉi implies that x and si are mapped to
similar (correlated) feature vectors.

The approach in this subsection is equivalent to the approach in Sect.
15.3.1 if we set

k
(
si, sj

)
=
〈
θ
(
si
)
,θ
(
sj
)〉

.

However, here θ is designed for the fi and via t(ci), the magnitudes of the
components ci can be computed. In contrast, in Sect. 15.3.1, the ci indicate
only the presence of source atoms.

15.4 Experiments

15.4.1 Nonlinear Approximation of the Linear Correlations

We use a dictionary consisting of 64 atoms of length 128. The atoms vary
in their frequencies and their shape (e.g., sinuidal, triangular, rectangular,
and asymmetric triangular). On average, we chose 4.5 dictionary atoms to
be present in one mixture. The nonzero coefficients ci are randomly chosen
from [0.1, 1.0] ∪ [−1.0,−0.1]. To generate training data, we then (1) added
Gaussian noise with variance 1.0 to each mixture component, (2) added noise
frequencies to the whole mixture (sinuidal with amplitude form [0; 0.2]), and
(3) shifted the phase of each atom by a random amount chosen from a uniform
distribution corresponding to a phase shift of 0–20% of the period. The values
for hyperparameters ε and C are chosen through a validation set. They are
adjusted so that the average number of sources which are not recognized is
below 0.5. In doing so, we impose an upper bound on the error that results
from failing to detect sources that are present. To evaluate the performance,
we count the number of sources which were wrongly detected.

The linear sparse-decomposition method leads to an error of 35.32.
Table 15.1 shows the result for the nonlinear kernel k(a, b) = (γ + a · b)d

with different values for γ and d. The nonlinear kernel obtains results
comparable to the linear sparse-decomposition method. This simulation
demonstrates that nonlinear kernels work even for linear problems. We as-
sume the reason for the good performance of the nonlinear kernels is that
they are more robust against noise or against the specific noise which is
present in the data if appropriate parameters are chosen.
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Table 15.1. Average over 100 trials of wrongly detected atoms (false positives) for
kernels k(a, b) = (γ + a · b)d (the linear result was 35.32).

d γ = 104 γ = 105 γ = 106 γ = 107

2 35.14 35.21 35.23 35.23
5 35.22 35.20 35.23 35.23
10 35.30 35.20 35.22 35.23
20 35.25 35.14 35.21 35.23
30 35.40 35.19 35.21 35.23

15.4.2 Transformed Atomic Sources

Artificial Data We consider a case where the mixture components have
been corrupted by a class of componentwise transformations that produce
nonnegative values: [f(s)]j = |sj |w, where w is a scalar that parameterizes f .
We wish to extract an invariance that mitigates the effect of w for any w.
The local variance is a measure that achieves this goal. The local variance of
s is defined as:

(2 l + 1)−1

j+l∑

t=j−l

(st − s̄j)
2
,

where

s̄j := (2 l + 1)−1

j+l∑

t=j−l

st

and l is a parameter that characterizes the neighborhood locality.
The local variance serves as an invariance extractor (θ). For w = 1 the

invariance is exact, because the curve is only mirrored at the y = 0 axis. The
mirroring is just a shift of the mean signal, a base-line-shift, which occurs for
many measurement devices (it is a huge problem for EEG measurements).
The variance as a central moment corrects the means to zero and eliminates
base-line-shifts. However in one signal the base-line-shifts may occur multiple,
therefore the variance should be taken locally. Also local frequency measures
are invariant to base-line-shifts but the local variance combines the frequency
of a whole frequency band.

For w > 1, the local variance is very robust against values of w, and
serves to define a similarity measure (signals which have high local variance
in the same position may be similar). For our tests, we used three different
neighborhood sizes: l = 8 (referred to as AV1), l = 10 (AV2), l = 20 (AV3).

We generated 100 dictionary atoms of length 1024. To produce an atom we
segmented the 1024 length vector into random segments of length between
1 and 64. Each segment consists of a scaled (from [−0.8,−0.2] ∪ [0.2, 0.8])
periodic function from previous experiment. To each segment component a
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Table 15.2. Best linear results out of 100 trials.

Task False negative False positive

1: s2
i 0.94 9.20

2: |si| 1.03 20.97
3: |si|w 1.00 20.02

Table 15.3. Average over 100 mixtures of the number of wrongly detected atoms
(false positives) for the linear sparse-decomposition method (“linear”) and three
different methods measuring the local variance (“AV1”–“AV3”). “Failed” means
that we were not able to push the average number of undetected sources (false
negatives) below 0.4.

Task Linear AV1 AV2 AV3

1: s2
i Failed 0.63 0.72 0.99

2: |si| Failed 5.41 7.38 Failed
3: |si|w Failed 0.55 0.84 2.37

constant between [−ac,+ac] is added. Figure 15.4 depicts the data generation
process.

Task 1 uses w = 1, task 2 uses w = 2, and task 3 uses |sj |w with w
randomly chosen from [0.5; 2.0] as transformation. We set ac = 5.0 for task 1
and ac = 0.5 for task 2 and 3. The transformations are mixed as in previous
experiment and Gaussian noise has σ = 0.01. As in the previous experiment,
we ensure that the average number of undetected sources falls below a bound
which is here set to 0.4. The best linear results are shown in Table 15.2 and
the average results of our new method are shown in Table 15.3. The nonlinear
mapping by the local variance formulas was able to extract the invariant and,
therefore, could classify an atom as being present or not. The linear model
failed at the task.

The results show that extracting invariant features (here the local
variance) and measuring similarities between these invariant features in-
stead of the original waveforms can help to robustly detect sources in a
one-dimensional mixture. However prior knowledge is necessary to extract
appropriate features.

Speech Data We considered transformations that shift the dictionary
atoms, where each atom can have a different shift. As an invariant we use
the power spectrum. The dictionary entries are 5 spoken words (“hid”,
“head”, “had”, “hud”, and “hod”) spoken by 20 different speakers, yielding
a dictionary size of 100 atoms. The data was obtained from areas/speech/
database/hvd/ in the AI-Repository at cs.cmu.edu. The speech is sampled
at 10 kHz.
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Table 15.4. Average number of wrongly detected atoms for the linear sparse-
decomposition method (“linear”), and three nonlinear transformation into the
power spectrum (“PS1” to “PS3”). The error values are an average of 100 mix-
tures. “Failed” means that we were not able to push the missed atom signals below
a threshold (see text for details).

Linear PS1 PS2 PS3

Task 1 Failed 1.82 1.72 1.50
Task 2 Failed 5.06 4.82 5.10

We did not restrict the shifts of the atoms. The coefficients ci are chosen
from [0.2, 0.8]. The power spectrum is obtained by using fast Fourier trans-
formation with shifting Hanning window of size 256. The power spectrum is
often used in speech processing and it is suited to define various “speech ker-
nels”. The lowest twenty frequencies were set to zero. The additive Gaussian
noise had standard deviation of σ = 0.05 for task 1 (T1) and σ = 0.2 for task
2 (T2).

We compared three methods: PS1 is the power spectrum of the original
mixture, PS2 is the power spectrum of the mixture where absolute mixture
values smaller than 0.05 are set to zero, and PS3 is the power spectrum of the
mixture where absolute mixture values smaller that 0.1 are set to zero. As
in previous experiments we keep the average number of not detected atoms
below a certain bound: 0.64 for T1 and 0.74 for T2.

The linear approach completely failed to solve the task. The results for
the nonlinear transformation (power spectrum) are given in Table 15.4.
Figure 15.5 shows an example of atomic source detection for PS3.

15.5 Conclusions

In this chapter, we reinterpreted the sparse-decomposition method for a
single mixture as ε-support vector regression (ε-SVR). The ε-SVR analogy
supplied a new view on the sparse-decomposition method’s hyperparame-
ter and allowed us to introduce family of similar algorithms of which the
sparse-decomposition method is one member. This family includes methods
that allow for nonlinear transformations of the sources before they are mixed,
and other nonlinear transformations in the process of identifying dictionary
atoms in the mixture. One benefit of the nonlinearities incorporated into
the approach is that they can be used to achieve some degree of invariance
to irrelevant characteristics of signals. We demonstrated our approach with
experiments using noisy single mixtures and speech datasets.

At a broader level, this chapter provided a means of mapping an unsuper-
vised ICA problem into a supervised framework. To achieve this mapping, we
introduced the notion of a dictionary of predefined atoms. In our approach,
each unsupervised example is paired with each atom, and a fixed function
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Fig. 15.5. Example for the method PS3. It detected 6 dictionary atoms in mixture:
three were correctly and three wrongly detected. First line: three dictionary entries
which are present (but shifted) in the mixture. Second line: (left) the mixture
without noise and (right) the mixture. Third line: wrongly detected dictionary
entries out of 100.

is used to generate a “target” value for the example. This target value can
then be used within a supervised learning framework. Typically, the target
value might be a measure of similarity between the dictionary atom and the
example, such as a dot product. This mapping idea may well be useful in
other unsupervised learning problems, where the target values from different
unsupervised examples may be combined.
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